CLASSIFICATION UNDER LABEL NOISE BASED ON OUTDATED MAPS
نویسندگان
چکیده
منابع مشابه
study of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
Support Vector Machines Under Adversarial Label Noise
Battista Biggio [email protected] Dept. of Electrical and Electronic Engineering University of Cagliari Piazza d’Armi, 09123, Cagliari, Italy and Blaine Nelson [email protected] Dept. of Mathematics and Natural Sciences Eberhard-Karls-Universität Tübingen Sand 1, 72076, Tübingen, Germany and Pavel Laskov [email protected] Dept. of Mathematics and Natura...
متن کاملClassification on Soft Labels Is Robust against Label Noise
In a scenario of supervised classification of data, labeled training data is essential. Unfortunately, the process by which those labels are obtained is not error-free, for example due to human nature. The aim of this work is to find out what impact noise on the labels has, and we do so by artificially adding it. An algorithm for the noising procedure is described. Not only individual classifie...
متن کاملOn the Robustness of Decision Tree Learning Under Label Noise
In most practical problems of classifier learning, the training data suffers from the label noise. Hence, it is important to understand how robust is a learning algorithm to such label noise. Experimentally, Decision trees have been found to be more robust against label noise than SVM and logistic regression. This paper presents some theoretical results to show that decision tree algorithms are...
متن کاملMulti-Label Classification by Label Clustering based on Covariance
Multi-label classification is a supervised learning problem that predicts multiple labels simultaneously. One of the key challenges in such tasks is modelling the correlations between multiple labels. LaCova is a decision tree multi-label classifier, that interpolates between two baseline methods: Binary Relevance (BR), which assumes all labels independent; and Label Powerset (LP), which learns...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
سال: 2017
ISSN: 2194-9050
DOI: 10.5194/isprs-annals-iv-1-w1-215-2017